1140513 meeting
前言
以下與上週訓練方式相同,惟訓練方式改為 forecast
方法。
各組合也顯示資料集中 CO
、 NOx
、 O3
、 PM2.5
、 SO2
的 MSPE 。
原程式 (test 無缺值)
200
rm
MSPE: 0.2670296334605754
MSPE (per polluant): [0.24853024 0.2530521 0.26650984 0.29022381 0.27683218]
bm
MSPE: 0.028377005098096042
MSPE (per polluant): [0.05570757 0.00931698 0.00982079 0.01584567 0.05119401]
mnr
MSPE: 0.031035673202506362
MSPE (per polluant): [0.04832559 0.01763471 0.01713394 0.05337523 0.01870889]
forecast
MSPE: 0.01983729877681366
MSPE (per polluant): [0.02048197 0.01991615 0.02261555 0.01805628 0.01811654]
24
rm
MSPE: 0.00619986746721049
MSPE (per polluant): [0.00633583 0.00567932 0.00643217 0.00653991 0.0060121 ]
bm
MSPE: 0.014311867730900778
MSPE (per polluant): [0.05506475 0.00345052 0.00333255 0.00523976 0.00447176]
mnr
MSPE: 0.018981540433120517
MSPE (per polluant): [0.00333461 0.03810891 0.00481243 0.00331675 0.04533501]
forecast
MSPE: 0.0070626912237513545
MSPE (per polluant): [0.00720427 0.00756547 0.00656687 0.00792716 0.00604968]
12
rm
MSPE: 0.002616900708467343
MSPE (per polluant): [0.00300699 0.0035922 0.00263202 0.00171722 0.00213607]
bm
MSPE: 0.038285284933024764
MSPE (per polluant): [0.02292427 0.06918261 0.0394378 0.02133293 0.03854882]
mnr
MSPE: 0.04627111620176548
MSPE (per polluant): [0.0442022 0.04389888 0.04129601 0.04729015 0.05466834]
forecast
MSPE: 0.027468193901030315
MSPE (per polluant): [0.03450684 0.02567697 0.02923344 0.01771871 0.030205 ]
預測 (test 可缺值)
200
rm
MSPE for all: 0.26359314172785486
MSPE for all (per polluant): [0.26905376 0.25574947 0.28052578 0.25100442 0.26163227]
MSPE only for missing: 0.266999942757196
MSPE for all (per polluant): [0.28228508 0.27145088 0.29145757 0.23416063 0.25510918]
bm
MSPE for all: 0.03627450973249119
MSPE for all (per polluant): [0.03418577 0.03615802 0.03825413 0.03674731 0.03602732]
MSPE only for missing: 0.09063353972406932
MSPE for all (per polluant): [0.08541148 0.09034198 0.09558279 0.09181558 0.09001587]
rbm
MSPE for all: 0.18872160069272334
MSPE for all (per polluant): [0.1245216 0.23241761 0.27848055 0.17466932 0.13351893]
MSPE only for missing: 0.1529691304212167
MSPE for all (per polluant): [0.31117033 0.05161114 0.09800657 0.07323075 0.23082686]
forecast
MSPE for all: 0.021272910649979906
MSPE for all (per polluant): [0.02169129 0.0203196 0.02180517 0.02046255 0.02208595]
MSPE only for missing: 0.05313452497446276
MSPE for all (per polluant): [0.05418063 0.05075108 0.05446552 0.05110837 0.05516703]
24
rm
MSPE for all: 0.006075528992989291
MSPE for all (per polluant): [0.00671391 0.00600151 0.00490925 0.00661012 0.00614285]
MSPE only for missing: 0.02425226355592921
MSPE for all (per polluant): [0.00531567 0.00777571 0.10396352 0.00475068 0.00439044]
bm
MSPE for all: 0.002255499816708605
MSPE for all (per polluant): [0.00236381 0.00218572 0.00243353 0.00219861 0.00209583]
MSPE only for missing: 0.0458826803307174
MSPE for all (per polluant): [0.04814393 0.04443191 0.04959418 0.04469903 0.04254436]
rbm
MSPE for all: 0.0075089527580064555
MSPE for all (per polluant): [0.00872188 0.00656201 0.00420567 0.01047179 0.00758342]
MSPE only for missing: 0.01891713509648322
MSPE for all (per polluant): [0.03741054 0.00052717 0.00024734 0.05448549 0.00191513]
forecast
MSPE for all: 0.007943497468487118
MSPE for all (per polluant): [0.00652371 0.00969486 0.00874908 0.0077423 0.00700754]
MSPE only for missing: 0.16438706211646267
MSPE for all (per polluant): [0.13480245 0.20087991 0.18117356 0.16019934 0.14488005]
12
rm
MSPE for all: 0.0024877418248716965
MSPE for all (per polluant): [0.00212427 0.00400996 0.00201409 0.00214242 0.00214798]
MSPE only for missing: 0.002110897565069707
MSPE for all (per polluant): [0.00154594 0.0008708 0.00047257 0.00196384 0.00552956]
bm
MSPE for all: 0.023524741195117407
MSPE for all (per polluant): [0.01595404 0.02913753 0.02277857 0.02257204 0.02718153]
MSPE only for missing: 0.9778849302630097
MSPE for all (per polluant): [0.66240434 1.21178666 0.94678264 0.93818589 1.13026512]
rbm
MSPE for all: 0.0028292502494105744
MSPE for all (per polluant): [0.0027832 0.0033312 0.00269622 0.00275 0.00258563]
MSPE only for missing: 0.004499003182155347
MSPE for all (per polluant): [1.84505694e-02 3.92772396e-04 5.71754454e-05 2.03783543e-03 1.55666327e-03]
forecast
MSPE for all: 0.028298511239477558
MSPE for all (per polluant): [0.02675121 0.02386053 0.03320219 0.02575034 0.03192828]
MSPE only for missing: 1.1767571661660086
MSPE for all (per polluant): [1.11228154 0.99181863 1.38109155 1.07055341 1.3280407 ]
結果
Test 無缺值
Time Window | Model | MSPE | CO | NOx | O3 | PM2.5 | SO2 |
---|---|---|---|---|---|---|---|
200 | rm | 0.26703 | 0.24853 | 0.25305 | 0.26651 | 0.29022 | 0.27683 |
bm | 0.02838 | 0.05571 | 0.00932 | 0.00982 | 0.01585 | 0.05119 | |
mnr | 0.03104 | 0.04833 | 0.01763 | 0.01713 | 0.05338 | 0.01871 | |
forecast | 0.01984 | 0.02048 | 0.01992 | 0.02262 | 0.01806 | 0.01812 | |
24 | rm | 0.00620 | 0.00634 | 0.00568 | 0.00643 | 0.00654 | 0.00601 |
bm | 0.01431 | 0.05506 | 0.00345 | 0.00333 | 0.00524 | 0.00447 | |
mnr | 0.01898 | 0.00333 | 0.03811 | 0.00481 | 0.00332 | 0.04534 | |
forecast | 0.00706 | 0.00720 | 0.00757 | 0.00657 | 0.00793 | 0.00605 | |
12 | rm | 0.00262 | 0.00301 | 0.00359 | 0.00263 | 0.00172 | 0.00214 |
bm | 0.03829 | 0.02292 | 0.06918 | 0.03944 | 0.02133 | 0.03855 | |
mnr | 0.04627 | 0.04420 | 0.04390 | 0.04130 | 0.04729 | 0.05467 | |
forecast | 0.02747 | 0.03451 | 0.02568 | 0.02923 | 0.01772 | 0.03021 |
Test 可缺值
MSPE for All
Time | Model | MSPE (All) | CO | NOx | O3 | PM2.5 | SO2 |
---|---|---|---|---|---|---|---|
200 | rm | 0.2636 | 0.2691 | 0.2557 | 0.2805 | 0.2510 | 0.2616 |
bm | 0.0363 | 0.0342 | 0.0362 | 0.0383 | 0.0367 | 0.0360 | |
rbm | 0.1887 | 0.1245 | 0.2324 | 0.2785 | 0.1747 | 0.1335 | |
forecast | 0.0213 | 0.0217 | 0.0203 | 0.0218 | 0.0205 | 0.0221 | |
24 | rm | 0.0061 | 0.0067 | 0.0060 | 0.0049 | 0.0066 | 0.0061 |
bm | 0.0023 | 0.0024 | 0.0022 | 0.0024 | 0.0022 | 0.0021 | |
rbm | 0.0075 | 0.0087 | 0.0066 | 0.0042 | 0.0105 | 0.0076 | |
forecast | 0.0079 | 0.0065 | 0.0097 | 0.0087 | 0.0077 | 0.0070 | |
12 | rm | 0.0025 | 0.0021 | 0.0040 | 0.0020 | 0.0021 | 0.0021 |
bm | 0.0235 | 0.0160 | 0.0291 | 0.0228 | 0.0226 | 0.0272 | |
rbm | 0.0028 | 0.0028 | 0.0033 | 0.0027 | 0.0028 | 0.0026 | |
forecast | 0.0283 | 0.0268 | 0.0239 | 0.0332 | 0.0258 | 0.0319 |
MSPE only for missing
Time | Model | MSPE (Missing) | CO | NOx | O3 | PM2.5 | SO2 |
---|---|---|---|---|---|---|---|
200 | rm | 0.2670 | 0.2823 | 0.2715 | 0.2915 | 0.2342 | 0.2551 |
bm | 0.0906 | 0.0854 | 0.0903 | 0.0956 | 0.0918 | 0.0900 | |
rbm | 0.1530 | 0.3112 | 0.0516 | 0.0980 | 0.0732 | 0.2308 | |
forecast | 0.0531 | 0.0542 | 0.0508 | 0.0545 | 0.0511 | 0.0552 | |
24 | rm | 0.0243 | 0.0053 | 0.0078 | 0.1040 | 0.0048 | 0.0044 |
bm | 0.0459 | 0.0481 | 0.0444 | 0.0496 | 0.0447 | 0.0425 | |
rbm | 0.0189 | 0.0374 | 0.0005 | 0.0002 | 0.0545 | 0.0019 | |
forecast | 0.1644 | 0.1348 | 0.2009 | 0.1812 | 0.1602 | 0.1449 | |
12 | rm | 0.0021 | 0.0015 | 0.0009 | 0.0005 | 0.0020 | 0.0055 |
bm | 0.9779 | 0.6624 | 1.2118 | 0.9468 | 0.9382 | 1.1303 | |
rbm | 0.0045 | 0.0185 | 0.0004 | 0.0001 | 0.0020 | 0.0016 | |
forecast | 1.1768 | 1.1123 | 0.9918 | 1.3811 | 1.0706 | 1.3280 |
autoFRK 嵌入 SSSDS4
在嵌入 autoFRK 的 Basis function 前,先將 Basis function 於 Python 中實現。
|
|