1140819 meeting #2
前言
本次實驗同 1140812-meeting ,僅將訓練的資料集更換為由 Yi-Xuan 所提供的基於 A Space-Time Skew-t Model for Threshold Exceedances 論文的程式碼(#simulation02)。
生成程式碼
|
|
其中,相關源文件如 mcmc.R
、 auxfunctions.R
需至原論文頁面下載。
SSSD
+ autoFRK
autoFRK 推論耗時 2.278237 小時(CPU)。
Method | ALL Locs & All Time | Known Locs & All Time | Unknown Locs & All Time | ALL Locs & Future | Known Locs & Future | Unknown Locs & Future | ALL Locs & Past | Known Locs & Past | Unknown Locs & Past |
---|---|---|---|---|---|---|---|---|---|
MSPE | 8.0150706 | 8.0138320 | 8.0225545 | 10.2574592 | 10.2536971 | 10.2801913 | 7.9253751 | 7.9242374 | 7.9322490 |
RMSPE | 2.8310900 | 2.8308713 | 2.8324114 | 3.2027268 | 3.2021395 | 3.2062737 | 2.8152043 | 2.8150022 | 2.8164249 |
MSPE% | 0.6619286 | 0.6620989 | 0.6609001 | 0.9169748 | 0.9169073 | 0.9173831 | 0.6517268 | 0.6519065 | 0.6506407 |
RMSPE% | 0.8135900 | 0.8136946 | 0.8129576 | 0.9575880 | 0.9575527 | 0.9578012 | 0.8072960 | 0.8074073 | 0.8066231 |
MAPE | 2.1243434 | 2.1242008 | 2.1252050 | 2.4274745 | 2.4270862 | 2.4298206 | 2.1122181 | 2.1120853 | 2.1130204 |
MAPE% | 0.1852098 | 0.1852309 | 0.1850818 | 0.2205807 | 0.2205915 | 0.2205154 | 0.1837949 | 0.1838165 | 0.1836645 |
TSMixer
+ autoFRK
TSMixer 推論耗時 8:19:27.466454 (TWCC’s CPU)。
autoFRK 推論耗時 2.171817 小時(CPU)。
Method | ALL Locs & All Time | Known Locs & All Time | Unknown Locs & All Time | ALL Locs & Future | Known Locs & Future | Unknown Locs & Future | ALL Locs & Past | Known Locs & Past | Unknown Locs & Past |
---|---|---|---|---|---|---|---|---|---|
MSPE | 1.44502397 | 1.44439323 | 1.44883507 | 16.665601 | 16.652844 | 16.7426881 | 0.83620087 | 0.83605521 | 0.83708095 |
RMSPE | 1.20209150 | 1.20182912 | 1.20367565 | 4.082352 | 4.080790 | 4.0917830 | 0.91444019 | 0.91436055 | 0.91492128 |
MSPE% | 0.12303788 | 0.12303331 | 0.12306550 | 1.396936 | 1.396672 | 1.3985268 | 0.07208197 | 0.07208775 | 0.07204705 |
RMSPE% | 0.35076756 | 0.35076104 | 0.35080693 | 1.181920 | 1.181809 | 1.1825932 | 0.26848086 | 0.26849162 | 0.26841582 |
MAPE | 0.79430264 | 0.79415834 | 0.79517455 | 3.070547 | 3.069021 | 3.0797694 | 0.70325285 | 0.70316383 | 0.70379076 |
MAPE% | 0.07003018 | 0.07002782 | 0.07004445 | 0.271140 | 0.271093 | 0.2714239 | 0.06198579 | 0.06198521 | 0.06198928 |
RegressionEnsemble
+ autoFRK
RegressionEnsemble 推論耗時 0:02:10.068782 (CPU 平行運算,核心數:12)。
autoFRK 推論耗時 2.435038 小時(CPU)。
Method | ALL Locs & All Time | Known Locs & All Time | Unknown Locs & All Time | ALL Locs & Future | Known Locs & Future | Unknown Locs & Future | ALL Locs & Past | Known Locs & Past | Unknown Locs & Past |
---|---|---|---|---|---|---|---|---|---|
MSPE | 2.96608847 | 2.96708573 | 2.96006272 | 56.2132785 | 56.2428486 | 56.034607 | 0.83620087 | 0.83605521 | 0.83708095 |
RMSPE | 1.72223357 | 1.72252307 | 1.72048328 | 7.4975515 | 7.4995232 | 7.485627 | 0.91444019 | 0.91436055 | 0.91492128 |
MSPE% | 0.24420715 | 0.24441150 | 0.24297243 | 4.5473366 | 4.5525052 | 4.516107 | 0.07208197 | 0.07208775 | 0.07204705 |
RMSPE% | 0.49417320 | 0.49437991 | 0.49292233 | 2.1324485 | 2.1336600 | 2.125113 | 0.26848086 | 0.26849162 | 0.26841582 |
MAPE | 0.87888812 | 0.87880052 | 0.87941744 | 5.2697699 | 5.2697178 | 5.270085 | 0.70325285 | 0.70316383 | 0.70379076 |
MAPE% | 0.07690199 | 0.07690613 | 0.07687692 | 0.4498069 | 0.4499292 | 0.449068 | 0.06198579 | 0.06198521 | 0.06198928 |
RegressionEnsemble
(LSTM) + autoFRK
RegressionEnsemble 推論耗時 0:44:58.043921 (CPU 平行運算,核心數:12)。
autoFRK 推論耗時 2.315555 小時(CPU)。
Method | ALL Locs & All Time | Known Locs & All Time | Unknown Locs & All Time | ALL Locs & Future | Known Locs & Future | Unknown Locs & Future | ALL Locs & Past | Known Locs & Past | Unknown Locs & Past |
---|---|---|---|---|---|---|---|---|---|
MSPE | 3.2180554 | 3.22101456 | 3.20017559 | 62.7644199 | 62.8449983 | 62.2775417 | 0.83620087 | 0.83605521 | 0.83708095 |
RMSPE | 1.7938939 | 1.79471852 | 1.78890346 | 7.9223999 | 7.9274837 | 7.8916121 | 0.91444019 | 0.91436055 | 0.91492128 |
MSPE% | 0.2715442 | 0.27197108 | 0.26896466 | 5.2580992 | 5.2690543 | 5.1919050 | 0.07208197 | 0.07208775 | 0.07204705 |
RMSPE% | 0.5210990 | 0.52150847 | 0.51861803 | 2.2930546 | 2.2954421 | 2.2785752 | 0.26848086 | 0.26849162 | 0.26841582 |
MAPE | 0.8926535 | 0.89264142 | 0.89272664 | 5.6276702 | 5.6295811 | 5.6161237 | 0.70325285 | 0.70316383 | 0.70379076 |
MAPE% | 0.0783323 | 0.07834531 | 0.07825369 | 0.4869951 | 0.4873478 | 0.4848642 | 0.06198579 | 0.06198521 | 0.06198928 |
結論
Method / Model | SSSD + autoFRK | TSMixer + autoFRK | RegressionEnsemble + autoFRK | RegressionEnsemble (LSTM) + autoFRK |
---|---|---|---|---|
MSPE ALL Locs (Future) | 10.2574592 | 16.665601 | 56.2132785 | 62.7644199 |
MSPE Known Locs (Future) | 10.2536971 | 16.652844 | 56.2428486 | 62.8449983 |
MSPE Unknown Locs (Future) | 10.2801913 | 16.7426881 | 56.034607 | 62.2775417 |
RMSPE ALL Locs (Future) | 3.2027268 | 4.082352 | 7.4975515 | 7.9223999 |
RMSPE Known Locs (Future) | 3.2021395 | 4.080790 | 7.4995232 | 7.9274837 |
RMSPE Unknown Locs (Future) | 3.2062737 | 4.0917830 | 7.485627 | 7.8916121 |
MSPE% ALL Locs (Future) | 0.9169748 | 1.396936 | 4.5473366 | 5.2580992 |
MSPE% Known Locs (Future) | 0.9169073 | 1.396672 | 4.5525052 | 5.2690543 |
MSPE% Unknown Locs (Future) | 0.9173831 | 1.3985268 | 4.516107 | 5.1919050 |
RMSPE% ALL Locs (Future) | 0.9575880 | 1.181920 | 2.1324485 | 2.2930546 |
RMSPE% Known Locs (Future) | 0.9575527 | 1.181809 | 2.1336600 | 2.2954421 |
RMSPE% Unknown Locs (Future) | 0.9578012 | 1.1825932 | 2.125113 | 2.2785752 |
MAPE ALL Locs (Future) | 2.4274745 | 3.070547 | 5.2697699 | 5.6276702 |
MAPE Known Locs (Future) | 2.4270862 | 3.069021 | 5.2697178 | 5.6295811 |
MAPE Unknown Locs (Future) | 2.4298206 | 3.0797694 | 5.270085 | 5.6161237 |
MAPE% ALL Locs (Future) | 0.2205807 | 0.271140 | 0.4498069 | 0.4869951 |
MAPE% Known Locs (Future) | 0.2205915 | 0.271093 | 0.4499292 | 0.4873478 |
MAPE% Unknown Locs (Future) | 0.2205154 | 0.2714239 | 0.449068 | 0.4848642 |
結語
運行環境
- 本機作業系統:Windows 11 24H2
- 程式語言:Python 3.12.9
- 計算平臺:財團法人國家實驗研究院國家高速網路與計算中心臺灣 AI 雲
- 作業系統:Ubuntu
- Miniconda
- GPU:NVIDIA Tesla V100 32GB GPU
- CUDA 12.8 driver
- 程式語言:Python 3.10.16 for Linux
延伸學習
- 我測試此項目的 Github 儲存庫 。
參考資料
Global Modeling and Assimilation Office (GMAO)。(2015)。MERRA-2 tavg1_2d_flx_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Surface Flux Diagnostics (Version 5.12.4) [資料集]。Goddard Earth Sciences Data and Information Services Center (GES DISC)。參考自 https://doi.org/10.5067/7MCPBJ41Y0K6
Juan Lopez Alcaraz 、 Nils Strodthoff(2022)。Diffusion-based time series imputation and forecasting with structured state space models。Transactions on Machine Learning Research。參考自 https://openreview.net/forum?id=hHiIbk7ApW
SSSD(2022)。GitHub。參考自 https://github.com/AI4HealthUOL/SSSD
SSSD_CP(2024)。GitHub。參考自 https://github.com/egpivo/SSSD_CP
Unit8 SA(無日期)。Time Series Made Easy in Python。Darts。參考自 https://unit8co.github.io/darts/index.html
darts(2025)。GitHub。參考自 https://github.com/unit8co/darts
Tzeng, S., & Huang, H. C. (2018). Resolution Adaptive Fixed Rank Kriging. Technometrics, 60(2), 198–208. 參考自 https://doi.org/10.1080/00401706.2017.1345701
autoFRK(2024)。GitHub。參考自 https://github.com/egpivo/autoFRK
Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O. Arik and Tomas Pfister. (2023). TSMixer: An all-MLP architecture for time series forecasting. arXiv. 參考自 https://arxiv.org/abs/2303.06053