1140820 meeting
前言
本次實驗同 1140819 meeting #2 ,僅將訓練的資料集進行修改,嘗試建立不平穩的時空資料(#simulation02)。
生成程式碼
|
|
SSSD
+ autoFRK
autoFRK 推論耗時 2.308502 分鐘(CPU 平行運算,核心數:23)。
Method | ALL Locs & All Time | Known Locs & All Time | Unknown Locs & All Time | ALL Locs & Future | Known Locs & Future | Unknown Locs & Future | ALL Locs & Past | Known Locs & Past | Unknown Locs & Past |
---|---|---|---|---|---|---|---|---|---|
MSPE | 8.0983871 | 8.0974742 | 8.1039030 | 10.4616376 | 10.4557819 | 10.4970198 | 8.0038570 | 8.0031419 | 8.0081784 |
RMSPE | 2.8457665 | 2.8456061 | 2.8467355 | 3.2344455 | 3.2335402 | 3.2399105 | 2.8291089 | 2.8289825 | 2.8298725 |
MSPE% | 0.6694759 | 0.6696741 | 0.6682784 | 0.9488726 | 0.9486365 | 0.9502994 | 0.6583000 | 0.6585156 | 0.6569976 |
RMSPE% | 0.8182151 | 0.8183362 | 0.8174830 | 0.9741009 | 0.9739797 | 0.9748330 | 0.8113569 | 0.8114897 | 0.8105539 |
MAPE | 2.1345819 | 2.1344842 | 2.1351718 | 2.4550424 | 2.4544972 | 2.4583365 | 2.1217634 | 2.1216837 | 2.1222452 |
MAPE% | 0.1861786 | 0.1862036 | 0.1860274 | 0.2245853 | 0.2245847 | 0.2245889 | 0.1846423 | 0.1846684 | 0.1844849 |
TSMixer
+ autoFRK
TSMixer 推論耗時 3:02:20.712516 (CPU 平行運算,核心數:24)。
autoFRK 推論耗時 2.16183 小時(CPU 平行運算,核心數:23)。
Method | ALL Locs & All Time | Known Locs & All Time | Unknown Locs & All Time | ALL Locs & Future | Known Locs & Future | Unknown Locs & Future | ALL Locs & Past | Known Locs & Past | Unknown Locs & Past |
---|---|---|---|---|---|---|---|---|---|
MSPE | 1.45578459 | 1.45541679 | 1.45800689 | 16.9453775 | 16.9394563 | 16.9811555 | 0.83620087 | 0.83605521 | 0.83708095 |
RMSPE | 1.20655899 | 1.20640656 | 1.20747956 | 4.1164764 | 4.1157571 | 4.1208198 | 0.91444019 | 0.91436055 | 0.91492128 |
MSPE% | 0.12375677 | 0.12378136 | 0.12360816 | 1.4156267 | 1.4161217 | 1.4126359 | 0.07208197 | 0.07208775 | 0.07204705 |
RMSPE% | 0.35179080 | 0.35182575 | 0.35157952 | 1.1898011 | 1.1900091 | 1.1885436 | 0.26848086 | 0.26849162 | 0.26841582 |
MAPE | 0.79514139 | 0.79503358 | 0.79579276 | 3.0923547 | 3.0917774 | 3.0958430 | 0.70325285 | 0.70316383 | 0.70379076 |
MAPE% | 0.07008419 | 0.07008509 | 0.07007878 | 0.2725444 | 0.2725821 | 0.2723164 | 0.06198579 | 0.06198521 | 0.06198928 |
RegressionEnsemble
+ autoFRK
RegressionEnsemble 推論耗時 0:02:39.071316 (CPU 平行運算,核心數:12)。
autoFRK 推論耗時 2.917213 小時(CPU 平行運算,核心數:23)。
Method | ALL Locs & All Time | Known Locs & All Time | Unknown Locs & All Time | ALL Locs & Future | Known Locs & Future | Unknown Locs & Future | ALL Locs & Past | Known Locs & Past | Unknown Locs & Past |
---|---|---|---|---|---|---|---|---|---|
MSPE | 2.96608847 | 2.96708573 | 2.96006272 | 56.2132785 | 56.2428486 | 56.034607 | 0.83620087 | 0.83605521 | 0.83708095 |
RMSPE | 1.72223357 | 1.72252307 | 1.72048328 | 7.4975515 | 7.4995232 | 7.485627 | 0.91444019 | 0.91436055 | 0.91492128 |
MSPE% | 0.24420715 | 0.24441150 | 0.24297243 | 4.5473366 | 4.5525052 | 4.516107 | 0.07208197 | 0.07208775 | 0.07204705 |
RMSPE% | 0.49417320 | 0.49437991 | 0.49292233 | 2.1324485 | 2.1336600 | 2.125113 | 0.26848086 | 0.26849162 | 0.26841582 |
MAPE | 0.87888812 | 0.87880052 | 0.87941744 | 5.2697699 | 5.2697178 | 5.270085 | 0.70325285 | 0.70316383 | 0.70379076 |
MAPE% | 0.07690199 | 0.07690613 | 0.07687692 | 0.4498069 | 0.4499292 | 0.449068 | 0.06198579 | 0.06198521 | 0.06198928 |
RegressionEnsemble
(LSTM) + autoFRK
RegressionEnsemble 推論耗時 0:44:41.278393 (CPU 平行運算,核心數:12)。
autoFRK 推論耗時 2.235521 小時(CPU 平行運算,核心數:23)。
Method | ALL Locs & All Time | Known Locs & All Time | Unknown Locs & All Time | ALL Locs & Future | Known Locs & Future | Unknown Locs & Future | ALL Locs & Past | Known Locs & Past | Unknown Locs & Past |
---|---|---|---|---|---|---|---|---|---|
MSPE | 3.2180554 | 3.22101456 | 3.20017559 | 62.7644199 | 62.8449983 | 62.2775417 | 0.83620087 | 0.83605521 | 0.83708095 |
RMSPE | 1.7938939 | 1.79471852 | 1.78890346 | 7.9223999 | 7.9274837 | 7.8916121 | 0.91444019 | 0.91436055 | 0.91492128 |
MSPE% | 0.2715442 | 0.27197108 | 0.26896466 | 5.2580992 | 5.2690543 | 5.1919050 | 0.07208197 | 0.07208775 | 0.07204705 |
RMSPE% | 0.5210990 | 0.52150847 | 0.51861803 | 2.2930546 | 2.2954421 | 2.2785752 | 0.26848086 | 0.26849162 | 0.26841582 |
MAPE | 0.8926535 | 0.89264142 | 0.89272664 | 5.6276702 | 5.6295811 | 5.6161237 | 0.70325285 | 0.70316383 | 0.70379076 |
MAPE% | 0.0783323 | 0.07834531 | 0.07825369 | 0.4869951 | 0.4873478 | 0.4848642 | 0.06198579 | 0.06198521 | 0.06198928 |
結論
Method / Model | SSSD + autoFRK | TSMixer + autoFRK | RegressionEnsemble + autoFRK | RegressionEnsemble (LSTM) + autoFRK |
---|---|---|---|---|
MSPE ALL Locs (Future) | 10.4616376 | 16.9453775 | 56.2132785 | 62.7644199 |
MSPE Known Locs (Future) | 10.4557819 | 16.9394563 | 56.2428486 | 62.8449983 |
MSPE Unknown Locs (Future) | 10.4970198 | 16.9811555 | 56.034607 | 62.2775417 |
RMSPE ALL Locs (Future) | 3.2344455 | 4.1164764 | 7.4975515 | 7.9223999 |
RMSPE Known Locs (Future) | 3.2335402 | 4.1157571 | 7.4995232 | 7.9274837 |
RMSPE Unknown Locs (Future) | 3.2399105 | 4.1208198 | 7.485627 | 7.8916121 |
MSPE% ALL Locs (Future) | 0.9488726 | 1.4156267 | 4.5473366 | 5.2580992 |
MSPE% Known Locs (Future) | 0.9486365 | 1.4161217 | 4.5525052 | 5.2690543 |
MSPE% Unknown Locs (Future) | 0.9502994 | 1.4126359 | 4.516107 | 5.1919050 |
RMSPE% ALL Locs (Future) | 0.9741009 | 1.1898011 | 2.1324485 | 2.2930546 |
RMSPE% Known Locs (Future) | 0.9739797 | 1.1900091 | 2.1336600 | 2.2954421 |
RMSPE% Unknown Locs (Future) | 0.9748330 | 1.1885436 | 2.125113 | 2.2785752 |
MAPE ALL Locs (Future) | 2.4550424 | 3.0923547 | 5.2697699 | 5.6276702 |
MAPE Known Locs (Future) | 2.4544972 | 3.0917774 | 5.2697178 | 5.6295811 |
MAPE Unknown Locs (Future) | 2.4583365 | 3.0958430 | 5.270085 | 5.6161237 |
MAPE% ALL Locs (Future) | 0.2245853 | 0.2725444 | 0.4498069 | 0.4869951 |
MAPE% Known Locs (Future) | 0.2245847 | 0.2725821 | 0.4499292 | 0.4873478 |
MAPE% Unknown Locs (Future) | 0.2245889 | 0.2723164 | 0.449068 | 0.4848642 |
結語
運行環境
- 本機作業系統:Windows 11 24H2
- 程式語言:Python 3.12.9
- 計算平臺:財團法人國家實驗研究院國家高速網路與計算中心臺灣 AI 雲
- 作業系統:Ubuntu
- Miniconda
- GPU:NVIDIA Tesla V100 32GB GPU
- CUDA 12.8 driver
- 程式語言:Python 3.10.16 for Linux
延伸學習
- 我測試此項目的 Github 儲存庫 。
參考資料
Global Modeling and Assimilation Office (GMAO)。(2015)。MERRA-2 tavg1_2d_flx_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Surface Flux Diagnostics (Version 5.12.4) [資料集]。Goddard Earth Sciences Data and Information Services Center (GES DISC)。參考自 https://doi.org/10.5067/7MCPBJ41Y0K6
Juan Lopez Alcaraz 、 Nils Strodthoff(2022)。Diffusion-based time series imputation and forecasting with structured state space models。Transactions on Machine Learning Research。參考自 https://openreview.net/forum?id=hHiIbk7ApW
SSSD(2022)。GitHub。參考自 https://github.com/AI4HealthUOL/SSSD
SSSD_CP(2024)。GitHub。參考自 https://github.com/egpivo/SSSD_CP
Unit8 SA(無日期)。Time Series Made Easy in Python。Darts。參考自 https://unit8co.github.io/darts/index.html
darts(2025)。GitHub。參考自 https://github.com/unit8co/darts
Tzeng, S., & Huang, H. C. (2018). Resolution Adaptive Fixed Rank Kriging. Technometrics, 60(2), 198–208. 參考自 https://doi.org/10.1080/00401706.2017.1345701
autoFRK(2024)。GitHub。參考自 https://github.com/egpivo/autoFRK
Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O. Arik and Tomas Pfister. (2023). TSMixer: An all-MLP architecture for time series forecasting. arXiv. 參考自 https://arxiv.org/abs/2303.06053