1140902 meeting
前言
本次實驗源於修改 Regression Ensemble 中的 LSTM 部分,藉由調整 LSTM 模型參數,使該模型能更加準確。
程式碼
修改的程式碼如下:
|
|
模擬一
用於與 1140821 meeting 比較。
Method | ALL Locs & All Time | Known Locs & All Time | Unknown Locs & All Time | ALL Locs & Future | Known Locs & Future | Unknown Locs & Future | ALL Locs & Past | Known Locs & Past | Unknown Locs & Past |
---|---|---|---|---|---|---|---|---|---|
MSPE | 8.290791581 | 8.156691128 | 9.101066219 | 141.46141777 | 141.23102811 | 142.85350026 | 2.963966534 | 2.833717649 | 3.750968858 |
RMSPE | 2.879373470 | 2.855992144 | 3.016797345 | 11.89375541 | 11.88406614 | 11.95213371 | 1.721617418 | 1.683364978 | 1.936741815 |
MSPE% | 0.027696563 | 0.027232927 | 0.030497993 | 0.47205142 | 0.47117129 | 0.47736946 | 0.009922369 | 0.009475392 | 0.012623134 |
RMSPE% | 0.166422844 | 0.165024018 | 0.174636746 | 0.68705999 | 0.68641918 | 0.69091928 | 0.099611088 | 0.097341625 | 0.112352724 |
MAPE | 1.297126883 | 1.277670082 | 1.414690631 | 10.64315946 | 10.63509135 | 10.69190938 | 0.923285580 | 0.903373232 | 1.043601881 |
MAPE% | 0.004323483 | 0.004256935 | 0.004725586 | 0.03554397 | 0.03551039 | 0.03574685 | 0.003074664 | 0.003006797 | 0.003484735 |
模擬二
用於與 1140820 meeting 比較。
Method | ALL Locs & All Time | Known Locs & All Time | Unknown Locs & All Time | ALL Locs & Future | Known Locs & Future | Unknown Locs & Future | ALL Locs & Past | Known Locs & Past | Unknown Locs & Past |
---|---|---|---|---|---|---|---|---|---|
MSPE | 3.21773771 | 3.22087836 | 3.19876099 | 62.7561588 | 62.841457 | 62.2407622 | 0.83620087 | 0.83605521 | 0.83708095 |
RMSPE | 1.79380537 | 1.79468057 | 1.78850804 | 7.9218785 | 7.927260 | 7.8892815 | 0.91444019 | 0.91436055 | 0.91492128 |
MSPE% | 0.27116842 | 0.27160954 | 0.26850307 | 5.2483297 | 5.259654 | 5.1799036 | 0.07208197 | 0.07208775 | 0.07204705 |
RMSPE% | 0.52073834 | 0.52116172 | 0.51817282 | 2.2909233 | 2.293394 | 2.2759402 | 0.26848086 | 0.26849162 | 0.26841582 |
MAPE | 0.89236684 | 0.89236015 | 0.89240724 | 5.6202164 | 5.622268 | 5.6078195 | 0.70325285 | 0.70316383 | 0.70379076 |
MAPE% | 0.07828959 | 0.07830305 | 0.07820826 | 0.4858846 | 0.486249 | 0.4836828 | 0.06198579 | 0.06198521 | 0.06198928 |
結語
運行環境
- 本機作業系統:Windows 11 24H2
- 程式語言:Python 3.12.9
- 計算平臺:財團法人國家實驗研究院國家高速網路與計算中心臺灣 AI 雲
- 作業系統:Ubuntu
- Miniconda
- GPU:NVIDIA Tesla V100 32GB GPU
- CUDA 12.8 driver
- 程式語言:Python 3.10.16 for Linux
延伸學習
- 我測試此項目的 Github 儲存庫 。
參考資料
Global Modeling and Assimilation Office (GMAO)。(2015)。MERRA-2 tavg1_2d_flx_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Surface Flux Diagnostics (Version 5.12.4) [資料集]。Goddard Earth Sciences Data and Information Services Center (GES DISC)。參考自 https://doi.org/10.5067/7MCPBJ41Y0K6
Juan Lopez Alcaraz 、 Nils Strodthoff(2022)。Diffusion-based time series imputation and forecasting with structured state space models。Transactions on Machine Learning Research。參考自 https://openreview.net/forum?id=hHiIbk7ApW
SSSD(2022)。GitHub。參考自 https://github.com/AI4HealthUOL/SSSD
SSSD_CP(2024)。GitHub。參考自 https://github.com/egpivo/SSSD_CP
Unit8 SA(無日期)。Time Series Made Easy in Python。Darts。參考自 https://unit8co.github.io/darts/index.html
darts(2025)。GitHub。參考自 https://github.com/unit8co/darts
Tzeng, S., & Huang, H. C. (2018). Resolution Adaptive Fixed Rank Kriging. Technometrics, 60(2), 198–208. 參考自 https://doi.org/10.1080/00401706.2017.1345701
autoFRK(2024)。GitHub。參考自 https://github.com/egpivo/autoFRK
Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O. Arik and Tomas Pfister. (2023). TSMixer: An all-MLP architecture for time series forecasting. arXiv. 參考自 https://arxiv.org/abs/2303.06053